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Abstract The report by Aldred Scott Warthin in 1913 of
a cancer family history and expanded on by Henry T.
Lynch demonstrated one of the most enduring traits
observed in patients with Lynch syndrome. The recognition
of a variety of malignancies occurring at differing ages
within a single family suggested the role of genetic vari-
ance on disease expression in an autosomal dominantly
inherited genetic condition. With the identification of the
genetic basis of Lynch syndrome and the subsequent col-
lection of families and their medical records it has become
possible to identify subtle genetic effects that influence the
age at which disease onset occurs in this cancer predispo-
sition. Knowledge about genetic modifiers influencing
disease expression has the potential to be used to
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personalise prophylactic screening measures to maximise
the benefits for family members and their carers.
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Introduction

The primary function of mismatch repair (MMR) genes is to
eliminate base—base mismatches and insertion-deletion loops
which arise as a consequence of DNA polymerase slippage
during DNA replication [1]. MMR confers several genetic
stabilisation functions; it corrects DNA biosynthesis errors,
ensures the fidelity of genetic recombination and participates in
the earliest steps of checkpoint and apoptotic responses [2, 3].

Lynch syndrome (LS) is associated with a breakdown in
the efficiency of DNA MMR as a result of the loss of one
or more DNA repair proteins from this process. Mutations
in MSH2, MLHI, MSH6 or PMS2 decrease the fidelity of
DNA replication as there is a failure to recognise and
replace errors resulting from the mis-incorporation of bases
by DNA polymerase. DNA MMR is a housekeeping
function of all nucleated cells and as such any breakdown
in the fidelity of this process is likely to result in disease
irrespective of which gene is affected. Furthermore,
mutations in DNA MMR genes result in a “mutator phe-
notype” thereby predisposing individuals to a significantly
increased risk of malignancy.

It has been obvious from the first MSH2 and MLHI
mutation reports that differences in the ages of cancer
diagnosis in patients harbouring germline mutations in
DNA MMR genes do occur both within and between
families. Furthermore, unrelated families harbouring the
same mutation present with different disease profiles [4-6].
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The differences in disease expression both within and
between families harbouring the same mutation are most
likely a result of environmental, genetic or a mixture of
both influences. The search for environmental factors that
could account for phenotypic variation is an almost
intractable problem when studied retrospectively and is
best undertaken prospectively, where as many factors can
be included in any such analysis. In contrast, genetic fac-
tors can be studied retrospectively and therefore are more
amenable to investigation. Ideally, both genetic and envi-
ronmental factors should be studied together to identify
those factors that can be modified by appropriate inter-
vention. To the authors knowledge no such study has been
undertaken to date and only genetic modifiers have been
identified in LS at this time.

Modifier genes

The search for modifier genes has been ongoing ever since
the first LS families were identified. Initial studies focused
on genes associated with xenobiotic metabolism which
have been followed by genes involved in the immune
response, DNA repair, cell cycle control and as yet unde-
fined genomic regions identified as a result of large genome
wide association studies searching for genetic risk factors
for colorectal cancer.

Initial studies in the search for genetic modifiers of
disease focused on the biological plausibility of functional
variants in a variety of different pathways that include but
were not limited to xenobiotic clearance [7-12], cell cycle
control, DNA repair [13-16], immunological activity and
glycolysis [17—19]. The first reports on modifier genes also
tended to be from small cohorts of patients [7-11, 13]
where the confidence intervals of association were large.
Many of the original studies have subsequently failed
replication in larger cohorts, suggesting that the population
size used in many of the initial reports was too small and
therefore lacked statistical rigour. Nevertheless, some
inferences were proposed that have appeared to hold up to
greater scrutiny.

Xenobiotic clearance and micronutrient metabolism

The removal of many carcinogens is controlled by a
complex process involving phase I enzymes such as cyto-
chrome P450 (CYP), and phase II enzymes that include the
glutathione-S-transferases (GSTs) and N-acetyl transfer-
ases (NATs) [20]. Polymorphisms in these genes have been
associated with colorectal cancer but the precise roles that
each variant has on cancer risk remains controversial
[10-12, 21-28]. Genes involved in xenobiotic metabolism
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were therefore considered as ideal candidate modifier genes,
as a result of their association with the risk of malignancy
[20]. In the context of LS only a few reports have been
forthcoming on the disease modifying effects of xenobiotic
enzymes and have focused on NATI, NAT2, GST and CYP.

The first study of an association between disease risk
and polymorphisms in NAT2 in LS patients was reported in
a small number of families where there was considerable
disease diversity [7] and was later replicated in a second
independent report [11]. Re-investigation of the association
in two other unrelated patient cohorts failed to confirm any
association [12, 24]. The failure to identify an association
with NAT?2 has since been indirectly confirmed in a review
by Brockton et al. 2000 [28] who showed in 10 out of 11
studies of invasive CRC that NAT2 genotypes were not
linked to disease risk.

Polymorphisms in GST and cytochrome p450 family 1,
subfamily A, polypeptide 1 (CYPIAI) genes and their
relationship to disease risk in LS have also been reported
and have since come under scrutiny. There have been
reports both for and against an association [8, 10, 12, 29].
In one study the Mspl wildtype allele of CYPIAI was
associated with a decreased risk of CRC but the allele
distribution was not in Hardy—Weinberg equilibrium [12]
thereby casting some doubt on the relationship. In this
instance the evidence suggests that either a genotyping
error that skews the results in favour of an association that
is not real or it can be taken as supporting evidence for a
correlation [30]. Two polymorphisms in CYPIAI have
been associated with CRC [25, 27], which taken together
with the report of Talseth et al. 2006 [12] suggests that this
gene is involved in some aspect of CRC development.

The association of xenobiotic clearance and disease
expression in LS is complex and likely to be heavily
influenced by environmental factors that are not easily
identified or quantified. Nevertheless, future studies should
take into consideration gene environment interactions to
fully explain the contribution of xenobiotic enzyme poly-
morphisms with disease risk. This is highlighted in the
findings from European compared to Asian populations
where polymorphisms in GST show an association in the
Korean population but not Australian or European [7, 10,
29].

Taken together, the assessment of xenobiotic modifier
genes requires additional studies to delineate the environ-
mental factors that in concert with their respective genetic
variation affect the risk of disease.

Cell cycle control

Since DNA repair is integrally associated with cell cycle
control, functional polymorphisms in genes associated with
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this aspect of genomic integrity are attractive candidates
for modifier gene studies. The most well studied gene in
this regard is the tumour suppressor gene TP53. TP53 is the
most frequently mutated gene in a variety of cancers that
include colorectal cancer [31]. TP53 has been called a
master regulator as it is involved in the maintenance of
genomic integrity, blocking cell proliferation after DNA
damage and initiating apoptosis if it is too extensive
[32, 33]. In addition, there exists within any given popu-
lation a common functional variant, R72P, which is esti-
mated to occur at a frequency of approximately 35 % in the
general population [34]. The R72P SNP alters the function
of TP53 [35, 36] and as such has been widely studied in a
variety of malignancies [13, 37, 38].

In 2004 the age of colorectal cancer diagnosis in LS
patients was found to be associated with the R72P poly-
morphism [13]. Subsequently, this association could not be
replicated [15, 39]. The failure to identify an association
with TP53 suggested that the positive effect observed in the
first study [13] may have been related to the TP53 partner
MDM?2 that is also polymorphic. The effect of the poly-
morphism is to increase levels of MDM?2 that results in the
inability to stabilise TP53’s cellular stress response [40].
Evidence implicating MDM?2 as a modifier gene could not
be found in other studies [16].

Aurora-A and Cyclin DI, both necessary for cell cycle
control, have also been associated with the age of onset of
CRC in LS patients [41, 42] but replication studies have
consistently failed to substantiate the initial findings [43].
Several reports in particular have focused on Cyclin D1 and
most demonstrate no association [42, 44, 45]. In an Aus-
tralian and Polish study an initial report suggested an
association with MSH2 mutation carriers [43] however, on
expansion of the study population the original effect dis-
appeared [46].

ATM is another potential modifier that is involved in the
control of the cell cycle. Two reports [14, 47] have
examined a variant within the ATM gene producing dia-
metrically opposed results. At this time, no conclusions can
be made with respect to the potential role of ATM as a
modifier gene in LS.

DNA repair

The role of DNA repair processes outside of the context of
DNA mismatch repair represents a salient mechanism that
could influence the age at which disease develops in LS.
There are over 130 genes involved in DNA repair that all
have significant roles in maintaining the veracity of the
genome [48]. The DNA repair pathways of MMR and base
excision repair (BER) are both involved in the identifica-
tion, removal and repair of replication induced DNA errors.

The MMR system involves correcting mismatched bases
that occur during DNA replication [1], whereas BER is
highly specific for the repair of oxidative DNA damage
[49]. Double-strand breaks (DSBs) in DNA are repaired by
either non-homologous end joining (NHEJ) or homologous
recombination (HR). Polymorphisms in DNA repair genes
have been associated with cancer susceptibility suggesting
that altered repair function may explain some of the phe-
notypic differences observed in LS. Only one report to date
has examined a series of DNA repair gene polymorphisms
in MSH3, OGGI, XRCCI, XRCC2, XRCC3, BRCA2 and
Lig4 to determine if any could be associated with disease
expression in LS [50]. None of the polymorphisms in the
DNA repair genes listed could be shown to influence dis-
ease risk. The failure to identify any modifying effect does
not rule out the possibility that there exist DNA repair gene
polymorphisms that influence disease risk. Further studies
of additional genes are required before it can be unequiv-
ocally stated that DNA repair gene polymorphisms are not
associated with disease expression.

Telomerase is an enzyme involved in maintaining telo-
mere length after cell division. Telomere shortening has
been linked to the initiation of epithelial malignancies and
chromosomal instability [51, 52]. A polymorphism in
hTERT has been associated with cancer risk and one report
has tentatively linked this polymorphism to an earlier age
of cancer and/or polyp development in patients with LS
[53]. Of interest in this report is the absence of effect in
patients older than 45 years of age, suggesting that this
modifier is no longer effective when telomere shortening
has occurred in aging populations [54].

Immunological function

Tumours development is enhanced by an environment that
supports tumour growth by promoting angiogenesis and
facilitating genomic instability. The quintessential example
is Crohns’ disease where an increased risk of developing
CRC is observed if the disease is left untreated [55]. Cro-
hns’ disease is an auto-immune disorder characterised by
an over active pro-inflammatory response [56, 57].
Inflammatory responses can also increase DNA damage,
growth stimulation and enhanced survival of damaged cells
[54, 56]. Many cytokines are polymorphic with effects that
can alter transcription level and activity both in pro- and
anti-inflammatory response genes.

Several polymorphisms in a number of cytokines have
been investigated in relation to CRC risk and other cancer
types but not for LS [58—65]. Genetic variation in pro- and
anti-inflammatory cytokines has also been shown to influ-
ence the response to carcinogen exposure [64] [57] thereby
suggesting that the immune response is integral to disease
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risk. With respect to LS no association has been identified
in the one report focusing on a series of cytokine SNPs and
disease expression [17].

Given the complexity of the inflammatory response and
the limited number of SNPs examined, it cannot be ruled
out that a relationship between SNPs influencing the
immune response and LS exits.

Growth factors

Many growth factors are functionally polymorphic [66, 67]
and have been shown to be associated with a variety of
malignancies [68—71]. One growth factor that has received
some attention is IGF-1. Several environmental and phys-
iological reasons have been proposed that influence IGF-1
expression; however it has been only recently that evidence
has accumulated suggesting a genetic role. Rosen et al. was
the first to report that the length of the CA repeat region in
IGF-1 may be associated with circulating IGF-1 levels
[67].

In the context of LS IGF-1 appears to be particularly
important, /GF-1. The function of IGF-1 is associated with
cellular proliferation and differentiation and elevated levels
of IGF-1 have been linked to CRC which is thought to be a
result of the mitogenic and anti-apoptotic effects elicited by
this protein [70, 71]. IGF-1 was first reported as a potential
modifying gene in LS disease expression in 2006 [18]. The
CA-repeat polymorphism located near the /GF-1 promoter
region was described as having an association with the age
of disease onset in a cohort of 121 LS participants origi-
nating from the United States [18]. This result has been
replicated in two additional populations, one from Aus-
tralia [72] and a second from Poland [19]. Intriguingly, not
only was there a relationship between CA repeat size but it
appeared that the shorter CA-repeat the greater the effect.
Given the paucity of replication of modifier gene effects it
is encouraging to observe consistent effects are retained
across different ethnicities [19].

The identification of a CA-repeat polymorphism in a
growth factor gene associated with the age of colorectal
cancer onset in LS suggests other CA-repeats that are
functionally important in growth factor expression should
be examined for their potential role as modifier genes in
LS.

Other modifiers
A series of other modifier genes have been identified
that appear to influence disease expression in LS.

These include but are not limited to methylene tetrahy-
drofolate reductase (MTHFR) gene, the gene associated
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with haemochromatosis (Hfe) and a variety of other poly-
morphisms that occur in regions of the genome that do not
as yet have any defined function. The latter polymorphisms
have been identified from genome wide association studies
examining genetic risk factors associated with colorectal
cancer in the general population. A brief summary of what
has been revealed follows:

Methylene tetrahydrofolate reductase (MTHFR)

There are a number of reports in the literature suggesting that
polymorphisms in MTFHR are associated with colorectal
cancer risk. Two functional polymorphisms in MTHFR
(C677T and AI298C) have been the subject of intense
scrutiny in relation to colorectal cancer risk as they both have
significant effects on the activity of the protein product
[73, 74]. These two polymorphisms occur in relatively high
frequency in the general population both have been associated
with altered enzymatic function. MTHFR is a key folate-
metabolizing enzyme involved in DNA methylation and DNA
synthesis. The enzyme catalyses the irreversible conversion of
5,10-methylenetetrahydrofolate (5,10-MTHF), needed for
purine and thymidine synthesis, to 5-methyltetrahydrofolate
(5-MTHF), which is necessary for methionine production.
Insufficient thymidine results in uracil misincorporation into
DNA, leading to single-strand and double-strand breaks. Any
change in the relative frequency of DNA damage will increase
the risk of genetic instability.

Both A1298C and C677T are in high linkage disequi-
librium [74] and only rarely has a MTHFR allele been
identified that carries both the homozygote (CI1298C/
T677T) variants of these polymorphisms [75-77]. Owing to
this linkage disequilibrium, no studies have been reported
where patients have inherited both homozygote variants in
cis. Nevertheless, compound heterozygote carriers of
1298C and 677T have been identified. The effect of
inheriting both alleles in trans effectively reduces overall
MTHEFR activity, thereby significantly altering the kinetics
of folate metabolism. Evidence of the effects of MTHFR
variants on disease expression in LS revealed that com-
pound heterozygotes appeared to be significantly protected
against an early age of disease onset [78]. The survival
estimates predicted a median 10 year age difference for
CRC onset in patients carrying the combined heterozygote
MTHFR genotype which was supported by multi-variable
regression modelling. The data also suggested this effect
was significant in both h(MLHI and hMSH?2 carriers, where
previously only a significant association had been descri-
bed in hMLH1 for C677T only [79].

For individuals with a MMR deficiency, the effect of
reduced MTHFR activity is potentially advantageous since
uracil misincorporation could be particularly deleterious in
conjunction with an impaired DNA repair pathway.
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Knowledge about the kinetics of MTHFR is significant in
so far as dietary supplementation with folate (or with-
drawal) may be a mechanism by which disease expression
may be modulated in LS and may prove to be an indicator
of individual disease risk in this syndrome.

Haemochromatosis (Hfe)

The iron overload disorder hereditary haemochromatosis
(HH) is characterised by high iron indices and progressive
parenchymal iron overload due to unrestricted iron uptake
[reviewed in [80-83]. The primary cause of classical HH is a
result of polymorphisms in HFE, especially 845G > A SNP
which results in the substitution of a tyrosine residue for a
cysteine at position 282 (C282Y), which is present in
10-15 % of individuals of northern European descent. A
second more common but less penetrant polymorphism,
163C > G SNP (H63D) is present in 15-30 % of individuals
[80, 83-89]. Patients homozygote for the C282Y polymor-
phism are about 3 times more likely to develop CRC com-
pared to matched controls without the mutation [97]. There
has been only one study examining the risk of CRC in LS
suggestive of an effect. Homozygosity of the HFE H63D
mutation may act as a disease risk modifier in LS [90], with as
much as a 6 year difference in the age of disease onset for this
less penetrant HH allele. In the study by Shi et al.; [90] there
were too few C282Y homozygotes to allow for any mean-
ingful interpretation. While these findings will require sub-
stantiation in other populations, they support a possible
relationship between iron dysregulation and colorectal cancer
risk. An in-depth study of compound heterozygotes for both
Hfe polymorphisms is required to firmly establish if iron
status is indeed a risk factor for CRC in LS. It is well recog-
nized that gender affects are significant in HH and males tend
to fair less well than females. This may well be the case in LS
as well but larger studies are necessary to assess the exact
relationship of Hfe polymorphisms and colorectal cancer risk.

DNA (cytosine-5-)-methyltransferase 3 beta
(DNMT3B)

DNA methylation is regulated by a family of DNA meth-
yltransferases (DNMTs), of which three active forms
(DNMT1, DNMT3A and DNMT3B) have been identified
in mammalian cells [91]. A polymorphism located within
DNMT3B has been reported to influence enzyme expres-
sion as a result of altering its promoter activity. DNMT3B
was proposed as a candidate in disease modifier due to its
role in methylation. An example is the delta DNMT3B
SNP, which was reported to be associated with an earlier
age of CRC inset in LS [92]. A replication study, with over
400 individuals, failed to support the original report of an
association between the age of CRC onset and the

DNMT3B polymorphism [93]. The failure to confirm the
potential modifying influence of a polymorphism in one
population compared to another could be simply due to
insufficient numbers of test subjects. If a polymorphism is
an affect modifier its response should be similar no matter
what population is examined even though it may not reach
statistical significance. In the case of the delta DNMT3B
SNP no such trend was observed suggesting that the ori-
ginal observation may not have been statistically rigorous.

Polymorphisms identified from colorectal cancer
genome-wide associations studies

There are several loci identified within the human genome
that have been linked to CRC risk in the general population
[94-99]. Many of the loci represent novel regions within
the genome where little, if any, information is available
concerning functional aspects of what these represent.
Several groups have examined some of these SNPs in the
context of their modifier effects. In 2009 two of the SNPs
(rs16892766 and rs3802842) located on chromosomes
8923.3 and 11q23.1, respectively, were shown to be asso-
ciated with an increased risk of developing CRC in Dutch
LS patients [100]. This result was partially confirmed in a
combined Australian and Polish report, where instead of
there being a generalised effect on all LS patients, only
those with MLHI mutations were found to have an
increased risk of CRC [101]. A third report from France,
however, failed to replicate these findings [102]. More
recently, a combined analysis of the Australian, Dutch and
Polish LS totalling more than 1300 patients has confirmed
the original findings and allowed for an additive analysis to
determine whether one or more modifier alleles contribute
further to disease risk [103]. At this point in time it is not
entirely clear as to what functional effects rs3802842 has
on disease risk as it resides in a region of chromosome 11
that harbours four open reading frames and does not result
in any amino acid coding change thereby suggesting it may
be regulatory in nature [104]. The SNP located on chro-
mosome 8q23.3 maps to UTP23 [104] where it is presumed
to alter the functional activity of the encoded protein.

Continuing the search for modifier genes

Thus far there is now some evidence to suggest that disease
expression in LS is modified by genetic factors that are
inherited independently of a causative mutation in one of
the DNA mismatch repair genes. To date only a candidate
gene (or locus) study has been performed to identify
potential modifier genes in LS.

An alternative approach to screening candidate genes
would be to undertake a genome-wide association study

@ Springer



212

B. A. Talseth-Palmer et al.

similar to that performed for carriers of BRCAI mutations
which revealed a modifier locus on chromosome 19 [105].
This study required a total of 2383 BRCAI mutation car-
riers for the discovery phase of the project and a further
5986 BRCAI mutation carriers for the replication phase
[105]. Given that the carrier frequency of BRCAI is greater
than that of all MMR gene mutation carriers combined it
remains challenging to accumulate sufficient numbers of
LS patients for a genome-wide association study, espe-
cially when there is some evidence to suggest that modifier
effects may be specific to each MMR gene subgroup.

Summary

The search of modifier genes that influence disease
expression in LS has revealed a number of potential can-
didates that could be used for individualised patient care.
Several of the modifier genes reported to date are poten-
tially valuable in terms of intervention strategies. Both Hfe
and MTHFR must be confirmed in larger patient cohorts
and if shown to be unequivocally associated with disease
risks do offer avenues of potential risk reduction. Other
candidate modifier loci do appear to be very promising as
valuable additions to genetic screening for fine tuning
surveillance strategies to maximise patient care and mini-
mise unnecessary intervention. By including modifier
genes/loci in risk algorithms it should be possible to tailor
surveillance options for individual patients, which should
allow for better outcomes in terms of patient acceptance of
screening procedures resulting in reduced morbidity and
mortality.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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